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Abstract

An optimization of air breathing hypersonic cruise vehicles was
performed in order to determine basic configuration characteristics
and performance trends. A distinctive feature of the investigation is
that prediction techniques such as the method of characteristics were
used to determine the flow field surrounding the vehicle; therefore,
any interaction between the aerodynamic and propulsive flow fields is
accounted for in a fundamental manner. The general class of vehicles
considered in the study cruise in the Mach 8 - 12 speed regime, utilize
a hydrogen fueled supersonic combustion ramjet engine, and can be
geometrically characterized as two-dimensional wedgelike shapes.
Configurations were optimized for maximum cruise range as deter-
mined from the Breguet range equation which incorporates a measure
of the aerodynamic, propulsive, and volumetric efficiencies of a con-
figuration. A generalized configuration model was defined by discrete
parameters which transformed the variational problem to a static or
discrete optimization problem. The direct method of function optimi-
zation, utilizing search algorithms such as random point and adaptive
creeper techniques, was employed to determine the value of the para-
meters defining the optimum configuration for cruise at design Mach
numbers of 8, 10, and 12. The design parameter space in the vicinity
of the optimum point was explored to show performance sensitivity.
Results of this study showed that optimum cruise configurations are
characterized by small wings. Approximately three-fourths of the total
lift is provided directly from the propulsive system in accordance with
an expression for optimum propulsive force vectoring derived in the
study. The results also indicated that Breguet range factors of approx-
imately 10,000 nautical miles are attainable by vehicles which cruise

in the Mach 8 to 12 speed regime.

xiv



CONFIGURATION OPTIMIZATION OF A CLASS
OF HYPERSONIC CRUISE VEHICLES

I. Introduction

Background

The problem considered in this dissertation is the configuration
optimization of air breathing hypersonic cruise vehicles. This study is
unique in that vehicle shape will be related directly to the flow field
surrounding the vehicle. Previous configuration studies relating geom-
etry directly to the flow field have dealt only with components of the
vehicle such as the wings (Ref 1). Complete vehicle optimization
studies, on the other hand, usually relate the shape of the vehicle indi-
rectly to the flow field through the use of force coefficients and
geometric ratios (Ref 2). At hypersonic speeds the interaction between
the aerodynamic and propulsive characteristics of the vehicle can
become significant, making questionable the use of force coefficients
and geometric ratios to relate vehicle shape to the actual flow field
surrounding the vehicle.

Kuchemann, writing in ' Progress in Aeronautical Sciences'

(Ref 3), points out the danger of carrying over concepts derived for
components to a system composed of the components. He also indicates
the need for a fundamental analysis of systems which includes the
combined effect of the aerodynamic and propulsive flow field, which is

the overall goal of this dissertation.

Optimization Process

The statement of the overall goal of the optimization study is the
first step in the optimization process. According to Pun (Ref 4), the
steps involved in the solution of a general optimization problem include:
(1) definition of the overall goal, (2) definition of the level of solution,
(3) mathematical formulation of the optimization problem, (4) selec-
tion of the optimizing method, and (5) realization of results. These

steps also serve as a logical outline for the developnicnt of the



optimization problem considered in this dissertation.

Level of Solution. In a problem as broad and complex as the

optimization of cruise vehicles, the definition of the level of solution
becomes very important. For example, the level of solution could
range from a cursory feasibility study to a study for implementing a
prototype hypersonic cruise vehicle which would be complete in every
detail.

The level of solution adopted for this investigation was between
the extremes cited in the above example. The investigation can be
characterized as a shape study with emphasis placed on relating vehicle
geometry directly to the flow field. The level of solution is reflected in
the mathematical formulation of the optimization problem which is the

next step in the optimization process.

Problem Formulation. In analytical aerodynamic configuration

studies, the mathematical formulation of the optimization problem
consists of selection of a performance criterion and a model to relate
vehicle configuration to the performance criterion. In the literature,
the performance criterion is also referred to as a payoff, return, or
cost function. Chapter 1l contains the development leading to the
selection of cruise range as the performance criterion for this study.
The ideal vehicle model in an optimization study would be
completely general with all variables and factors determined directly
from the physics of the problem. In order to make the problem tract-
able, however, it was necessary to limit the investigation to a partic-
ular class of vehicles. Chapter II contains a discussion of the factors
involved in the selection of the vehicle model. The selected class of
vehicles cruise in the Mach 8 to 12 speed regime, utilize a constant
area supersonic combustion ramjet engine which burns hydrogen fuel,
and can be characterized geometrically as two-dimensional wedgelike

wing body vehicles.



Chapter II also contains a description of the force and flow field
prediction methods which are essential to relating vehicle shape direct-
ly to the surrounding flow field. Once the mathematical formulation of
the problem is complete, the next step in the optimization process
becomes the selection of a method to optimize the performance

criterion.

Optimizing Method. The two general optimizing methods used in

aerodynamic configuration studies are the indirect and direct methods.
Until recently, most configuration optimization studies have utilized
indirect methods such as the calculus of variations. With the advent of
the digital computer, the direct method has become practical in the
solution of optimization problems. Chapter III contains a discussion of
the application of the direct method of optimization to the cruise vehicle

optimization problem considered in this investigation.

Realization of Results. The last step in the optimization process,

the realization of results, is closely related to the definition of the
level of solution. The level of solution adopted for this study does not
reveal all the possible performance and configuration characteristics of
optimized hypersonic cruise vehicles. However, the results and
conclusions of this study, contained in Chapter IV and V respectively,
do answer a number of fundamental questions concerning the

performance and configuration of hypersonic cruise vehicles.



II. Problem Formulation

One of the most difficult steps in the process of optimizing a
system such as a complete vehicle configuration is the formulation of
the problem. At all times, the objective or overall goal of the inves-
tigation must be kept in mind as well as the adopted level of solution.
Since the goal of the present investigation was to relate optimum
vehicle shape directly to the flow field, emphasis was placed on model
selection and flow field prediction techniques which allows the flow
field quantities to be determined quite accurately.

The problem formulation consists of selecting a performance
criterion and model to relate vehicle configuration to performance.
Culminating the problem formulation is an IBM 7094 computer program
which evaluates the performance of a generalized configuration defined
by various sets of design parameters. A discussion of the selection of
performance criterion, model, and design parameters is contained in
this section, while details of the computer program formulation as

well as a listing of the program are contained in Appendix E.

Performance Criterion

For cruise vehicles the primary objective is either to carry a
given payload for the maximum distance, or to carry the maximum
payload over a given distance. Thus, either payload or range is a
reasonable choice for the performance criterion. Maximum range
with a fixed payload was chosen as the measure of performance in this
investigation. Total range of a vehicle includes range covered in
ascent, cruise, and descent. In order to make the problem tractable
and still directly relate vehicle shape to flow field quantities, only the
cruise phase of the mission profile was considered. Thus, the opti- )
mized configuration represents the optimum cruise configuration of a

class of vehicles in which the range covered in the cruise phase of the

mission profile is most significant.



The cruise range is obtained in general by numerical integration
of the vehicle trajectory equations from initiation to termination of
cruise. However, if it is assumed during cruise that: (1) flight path
angle is zero, ¥ = 0; (2) cruise speed is constam:,%L = 0; and (3) the
product L Isp is constant, then the cruise range R can be expressed

D
by the familiar Breguet range equation (see Appendix A)

L \4 Wi
R = DIap T’V—r— In Wy (1)

Vo

subject to the restrictions of

W(l-%L;) (2)

L
o

and

dw (3)

T -IspaT— = D

The above version of the range equation yields great circle range over
a spherical nonrotating earth.

The Breguet range equation is an appropriate performance
criterion in that it incorporates three fundamental measures of vehicle
efficiency (aerodynamic, propulsive, and volumetric) in one equation.
The first two are easily recognized in Eq 1 as the L/D and Isp respect-
ively; however, the volumetric efficiency is implicitly related to the
structural factor term (4n W;/Wy) as shown in Appendix E. Volumetric
efficiency for the purpose of this investigation is the ratio of configura-

tion volume to the enclosing surface area, ¥/ Ay,.

Vehicle Model Selection

Once the performance criterion has been selected, a vehicle
model is needed to relate vehicle configuration to performance. In
order to proceed with the formulation of the problem it is necessary at

this point to limit further the problem by specifying the cruise Mach



number regime, combustion process, fuel, and geometrical

configuration class.

Mach Number Regime and Combustion Process. The lower limit

of the Mach number regime investigated (M = 8) was coupled to the
selection of combustion process. Previous studies (Ref 5) have shown
that the subsonic combustion process is more efficient below flight
Mach numbers of about M = 8, while supersonic combustion is more
efficient for the higher speeds. Mach number design points of M = 10
and M = 12 were also included in this study to determine the possibil-
ity of a cruise range increase with cruise veclocity, as suggested by the
velocity term in the Breguet range equation. Thus, the supersonic
combustion process was utilized as the model for the Mach 8, 10, and

12 design points.

Fuel. The specification of the flight Mach number regime of
M =8 to M=12 limited the choice of fuel for the vehicle to liquid
hydrogens The main factor in the fuel selection was the high heat sink

capacity of LH,; compared to the other candidate fuels shown in Table I.

TABLE I
Candidate Fuel Properties

Heat of Combustion Heat Sink Density M

Tusl Btu/ lb Btu/lb  1b/ ft? HIAY
Liquid H, 51, 600 6000 4.5 16
Methane 21, 500 1100 26.4 7
JP-4 18, 600 165 50. 0 3

At hypersonic speeds, it is necessary to cool actively at least the
combustor of the vehicle. The higher the speed--the higher the cooling
requirement. A limiting speed in a sense occurs when the fuel re-
quired for cooling (which is then used for propulsion) equals that
required for stoichiometric combustion. A qualitative estimate of the

limiting speed can be obtained by equating the heat sink of the fuel to



the total enthalpy of the air flow (Ref 6). The last column in Table I
indicates the maximum cruise Mach number for this condition. From
the table it can be seen that only LH, has enough cooling capacity for
the Mach number range considered in this investigation.

The density of LH; is approximately the same as the density of
passenger compartments of transport type vehicles; therefore, to the
first order, passengers and fuel can be interchanged. Since passenger
type cruise vehicles were considered in this investigation, configura-
tions optimized for maximum cruise range with a given payload will be
the same as configurations optimized for maximum payload over a

given cruise range.

Geometrical Class. One of the major steps in the formulation of

the optimum cruise vehicle problem is the selection of a geometrical
class of vehicle shapes to optimize. The two-dimensional wedgelike
wing body class of vehicles was selected as the model for this investi-
gation for several reasons. Since one of the basic goals of the study
was to relate vehicle configuration directly to the flow field caused by
volume, lift, and heat addition, the generalized model must be amena-
ble to these flow field calculations. Two classes of vehicle models
which are amenable to the required flow field calculations are a two-
dimensional wedgelike class and an axisymmetric conelike class. In
an investigation of hypersonic lifting bodies which included both of the
classes, Hankey found that when sharp leading edges could be main-
tained the two-dimensional wedgelike class had superior aerodynamic
and volumetric efficiencies--two of the factors in the performance cri-
terion of this investigation (Ref 7). The cooling capacity of the
hydrogen fuel allows regenerative cooling of the leading edges of the
two-dimensional configuration which permits the leading edges to be
aerodynamically '"sharp.!" Thus, on the basis of potential performance
considerations the wedgelike class was selected over the conelike class

as the geometrical model for this investigation.



A final consideration in the selection of the model was from the
standpoint of the evolution of the optimization model level in the
solution of optimization problems. Williams (Ref 8) considered a
wedgelike geometrical model at a lower level of solution. Some results
of the present investigation will be compared with the work of Williams
to gain insight into the effect of the level of solution on the realization
of results in the optimization process.

Due to the numerical nature of the algorithm for computing the
flow field surrounding the vehicle, variational optimization methods,
such as the calculus of variations, were not convenient to apply to this
problem. Therefore, a generalized configuration model was defined by
discrete parameters. Thus, the optimization problem was transformed
from a variational problem to a discrete or static problem (Ref 4).

The generalized configuration and the geometric parameters used to
define the confignration are shown in Figure 1. The parameters chosen
to define the geometrical model were balanced by two factors: (1) the
desire to have many design parameters in order to keep the model as
general as possible; and (2) the knowledge that each additional design
parameter increases the number of possible combinations of design

parameters which complicates the search for the optimum.

Force Prediction Model

At this point, methods are needeu to relate the vehicle model to
the performance criterion. The first two terms of the performance
criterion, the L/ D and Isp, can be determined from a knowledge of
the flow field surrounding the v:zhicle and the amount of hydrogen fuel
added to the propulsive stream. A unique feature of the present inves-
tigation is that a complete inviscid flow field solution was performed fc;r
each change in configuration geometry. Thus, any interaction between
components of the vehicle was accounted for in a fundamental manner.
Although described in more detail in Appendix E, a summary of the

model used to obtain the aerodynamic and propulsive forces on the
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velicle is presented here. In describing the model, it is convenient to
divide the vehicle into components: inlet-forebody, combustor,

nozzle-aftfuselage, fuselage, and wing.

Inlet-forebody. The inlet-forebody is a two-dimensional double

ramp inlet with a three-shock wave external compression system.
Fences (Fig 1) extend from the nose of the vehicle to the leading edge
of the inlet cowl to contain the inlet airflow. Thus, the vehicle is a
wave rider (Ref 9) in the sense that the forebody ' rides' on the con-
tained plane shock waves. Forces on the inlet-forebody were obtained
using the oblique shock relations with skin friction superimposed.

The geometry of the inlet was constrained to produce shock on the
cowl lip, thus all of the air flow deflected by the forebody is captured
by the inlet cowl and is used in the combustion process as depicted
schematically in Figure 2. The inlet geometry was also constrained to
produce a combustor entrance temperature of at least 2000R corre-
sponding to the auto-ignition value of the hydrogen fuel-air mixture.
The method of incorporation of these constraints in the mathematical

model is discussed in the section on constraints.

Combustor. Length of the combustor and the midsection of the
vehicle was defined by the length £, as shown in Figure 1. The com-
bustor inviscid flow field was computed using a constant area
one-dimensional supersonic combustion process. Turbulent skin
friction was superimposed on the inviscid solution to determine the
combustor duct forces, as it is shown in Appendix E that combustor

drag does not appreciably affect the inviscid solution.

Nozzle-aftfuselage. The underside of the aftfuselage of the

vehicle serves as an expansion surface for the combustor gases thereby
forming, along with the nozzle cowl and fences, a two-dimensional
asymmetric nozzle or half nozzle as shown in Figure 1. The nozzle
forces were determined by using the method of characteristics solution

to determine the pressure forces to which skin friction was superimposed.

10
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Fuselage and Wing. Oblique shock or Prandtl-Meyer relations

and superimposed skin friction were used to determine the forces on

the top surface of the fuselage, underside of the cowl, and wing surfaces
depending on the orientation of the surfaces with respect to the free-
stream flow direction. Base pressure drag and leading edge drag of
the fuselage and wings were included in the summation of vehicle

forces. Regenerative cooling requirements of the sharp leading edges
of the vehicle (one tenth of an inch diameter) were also determined for
the model.

Placement of wings on the fuselage was determined by the
requirement that the pitching moment about the center of gravity
(assumed to be at centroid of the fuselage profile area) be zero.

Rolling and yawing moments are zero due to symmetry of the model.
Thus, although stability and control devices (reaction controls, thrust
vectoring, and control surfaces) were not included in the analysis, the
vehicle model can be characterized as being trimmed about all three
axes.

In Appendix E, it is shown that in order to obtain the fiow field
solution it was necessary to specify the cruise Mach number M,,
ambient temperature T,, and pressure p; at cruise altitude, as well as
the amount of fuel added to the propulsive stream which can be
expressed in terms of the equivalence ratio ¢ . These quantities (M,,
Ty, P1» ¢), in addition to the vehicle geometry parameters, became
variables in the problem, although not necessarily independent
variables as will be explained in the section on constraints.

The problem formulation thus far has accounted for relating
vehicle geometry directly to the first three terms of the performance °

criterion which are collectively referred to as the range factor RF

given by

RF = %Ilp '—vv“r (4)

12



The range factor is an indication of the range potential of a
vehicle from a propulsive and aerodynamic point of view. The range
factor is meaningful, however, only if the aerodynamic and propulsive
characteristics are calculated in light of the constraint that the config-
uration provides a volume for payload, fuel, and equipment. This
constraint is contained implicitly in the last term of the performance
criterion--the structural factor In(Wj/ Wg). A method is needed at
this point in the formulation to relate vehicle geometry to the

structural factor and hence, to the performance criterion.

Structural Factor

The structural factor SF for the cruise segment of the

trajectory can be written as

q
Wee Wiy
SF = tn tm |1+ it "o
e e I ==
L wto wto wto

where

Wi/ Weo = cruise fuel fraction

Wgy/ Wyo = total available fuel fraction
Wp/ Wio = payload fractiorn

We / Wio = equipment fraction

Wg/ Wy, = structural weight fraction

The objective here is to relate the volumetric efficiency of a
configuration to the structural factor. It is shown in Appendix E that
this can be done by assuming the structural weight Wg to be a

{function of the surface area

W, = ¥, A (6)
and by assuming typical values for a set S of structural parameters

which become reference parameters for the evaluation of the structural
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factor. The set consists of three weight fractions which characterize
the mission of vehicles, material densities which relate weight to
vehicle volume, and the proportionality constant ¥g Which relates area

to structural weight

= w We Wi
S =B =.05, — =.15, =< = .5, p = 4.51b/ft?,
Yio Wio Wiy P
(7
Py = 4.51b/f°, p, = 180 1b/ft®, ¥, = 7.5 1b/ ft?

The assumed values of the structural set members are characteristic
of hydrogen fueled passenger transport type vehicles (Ref 10).
Appendix C contains a range performance sensitivity analysis of each
member of the structural set.

The main purpose of forming the structural set S, however, was
not to evaluate the absolute level of performance but rather to evaluate
the change in the performance as a function of the volumetric efficiency
of the configurations. This can now be done. Thus, three basic
measures of vehicle efficiency (aerodynamic, propulsive, and

volumetric) are incorporated in the performance criterion.

Constraints
Constraints incorporated in the mathematical formulation can
either help or hinder the optimization process. Constraints are help-
ful if the information from the constraints can be used to calculate
configuration variables thereby reducing the number of search vari-
ables. Besides reducing the number of search variables, it will be
shown in the next chapter that constraints can provide explicit
information on the boundaries of the feasible region of the design space.
Constraints complicate the optimization process if they cannot
be used to reduce the design space and must, for example, be

adjoined to the performance criterion to form a penaliz:d performance

14



criterion (Ref 11). Considerable effort was made in this investigation,
therefore, to use constraint information to limit the dimensions and
feasible region of the design space. The two general types of con-
straints incorporated in the mathematical formulation were the equality

and inequality constraints.

Equality. Relationships derived from equality constraints can be
used to reduce the number of search variables as shown in Appendix E.
In addition to geometric interrelationships, the following equality
constraints were imposed on the formulation: equilibrium flight, from
selection of performance criterion; trimmed condition, to provide a
gross measure of longitudinal stability; ambient pressure-temperature
relationship, from the physics of the atmosphere; and shock on inlet
cowl lip, from ramjet inlet design practice to give optimum perform-
ance. The shock on inlet lip constraint also reduces the dimensions of
the design space which still contains the optimum. Two nongeometric
parameters, combustor entrance temperature T4 and takeoff weight
W¢o» were also introduced to replace two geometric parameters, 0,
and {,, (see Fig 1) as design variables. The motivation for the substi-
tution becomes apparent later when discussing inequality constraints.
Although the substitution of design variables added two parameters to
the number necessary to define the generalized configuration, two
equality constraint relations were also added keeping the effective

number of independent variables constant.

Inequality. [Equality constraints have a direct influence on all
design points in the design space whereas inequality constraints influ-
ence the design only when the constraint is encountered. Two forms of
inequality constraints were present in the problem investigated in this
study. One form was applied directly as an upper and or lower bound
on the design variable. A lower bound of 2000R (auto-ignition value of
fuel-air mixture) was impoeed on the combustor entrance temperature.

An upper bound of 500, 000 1b was placed on the takeoff weight as a
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typical value since the results will show range performance to increase
monotonically with takeoff weight. Inequality constraints placed direct-
ly on the design variables are easily handled. In fact, they are even
desirable from an optimization search standpoint since they explicitly
define the boundaries of the feasible region of the design space.

On the other hand, inequality constraints which are functions of
the independent design variables are more difficult to handle. The
inequality constraint functions are calculated along with the perform-
ance criterion. If the value of the constraint function exceeds the
specified amount, then the value of the performance criterion for that
set of design variables is penalized. Thus, the function type inequality
constraint also limits the feasible region of the design space, although
after the fact since the numerical calculations have already been
performed.

The following functional type inequality constraints were
incorporated in the mathematical formulation:

(1) A cooling constraint, such that the fuel required for
regenerative cooling (see Appendix D) was less than or equal
to fuel required for propulsion.

(2) A wing placement constraint (see Fig 1) such that the
attachment point of the leading edge of the wing was on the
fuselage (l{ew < f}) and in the xy-plane of the body axis
system (8,2 0) for trimmed flight.

(3) A wing area constraint, such that planform area was greater
than or equal to zero (Sp = 0). Since in this formulation (see
Appendix E) the wing area was directly proportional to thrust
minus fuselage drag, a wing area greater than zero indicates
constant velocity flight can be maintained. Notice that the
wing area of the optimized configurations will reflect the
cruise point, Takeoff and landing considerations, not

included in this investigation, would perhaps require the

lower hound on the wing area constraint to be increased.
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The problem formulation contained in this chapter reflects one
level of solution of the general problem of configuration optimization of
hypersonic vehicles. The selections and assumptions made during the
formulation of the problem have resulted in a particular class of config-
urations to be optimized for a specific set of conditions. Since the
mathematical formulation of the problem does not include all classes of
configurations and a consideration of all constraints, limitations, and
influences; the optimized configuration is not expected to offer a final
solution to the optimum vehicle problem. The present formulation of
the problem is expected, however, to contribute to a final solution by
answering some fundamental questions concerning the performance and
configuration trends of optimum cruise vehicles when vehicle geometry
is related directly to the surrounding flow field.

Appendix E contains the development and a listing of the Fortran
IV computer program which resulted from the problem formulation
discussion presented in this chapter. The program relates the per-
formance criterion (cruise range R) to the parameterized configuration

shown in Figure 1. So that functionally
R = (X) (8)
where X is a set of independent design variables consisting of
X = (8,,Te, 0 Le,05,25,2,8y, 8,,,0,3, AR, b, 8,0, W, M)

Due to the numerical methods necessary to predict the flow field and to
integrate the forces on the vehicle, the algebraic form of Eq 8 is not
known. However, the value of the performance criterion can be deter-
mised numerically for values of the independent variables. Thus the
relationship between the performance criterion and independent design
variables is characterized as computational as opposed to mathematical.
This distinction becomes important in the selection of optimizing

methods which is discussed in the next chapter.
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III. Optimizing Method

Introduction

Once the problem is formulated, the next step in the optimization
process is the selection of an optimizing method. The methods can be
classified into two groups--indirect and direct. Indirect methods are
mathematical in the sense that necessary conditions are used to find the
extremum. In ordinary maxima and minima theory, the value of x is
sought which causes the first derivative of f(x) with respect to x to
vanish, or in the case of the calculus of variations the curve is sought
which satisfies the Euler necessary condition. In the direct method,
on the other hand, the value of x which makes f(x) an extremum is
determined by direct comparison of the value of the function at two or
more points in the operating space (Ref 12). Problems formulated by
the indirect methods can be solved either numerically or analytically;
whereas, the direct method implies a numerical solution. With the
advent of the digital computer, the direct method of optimization has
become practical.

The cruise vehicle optimization problem has been formulated so
that the performance criterion R can be evaluated for values of the
independent design variables X by the computational algorithm con-
tained in Appendix E. The objective now becomes to determine the

combination of independent design variables X t Which maximizes

op
the cruise range R

R = £(X)

max Opt = f (Xl, XZ. ¢« o o x]s )opt (9)

for design cruise Mach numbers of 8, 10, and 12.

In order to understand the factors involved in the direct search
for the maximizing set of design variables, it is helpful to introduce
some geometric concepts of the design variable space and response
surface such as those discussed by Wilde (Ref 12). The design vari-

able plane and response surface are schematically depicted in Fig 3
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FIG 3 Graphical Representation of Direct
Search Problem for Two Design Variables

for a function of two independent variables. In the case of configuration
optimization, for example, each point in the design variable plane
represents a configuration and comprises the input for a possible
numerical experiment. The point above it on the response surface
(the value of the function) represents the experimental outcome. The
feasible values which each of the independent variables can assume
form a bounded region in the design variable plane. This bounded
region is referred to as the experimental region or design space.
Geometrically, the direct search method of function optimization
locates the summit of the response surface by performing numerical
experiments with points contained in the design space. The methods
used to select the points with which to perform the numerical experi-
ments are called search techniques which are discussed later.
Although impossil.e to represent physically for functions of more than
two independent variables, the concepts of the design space and
response surface can be extended to functions of n independent

variables.
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Optimum Configuration Search

The search for the optimum cruise vehicle configuration can be
divided into three phases. The first phase is the definition of the
design space or experimental region from the design variable plane;
the second phase is the systematic exploration of the design space for

the optimum; and the third phase is the termination of the search,

Design Space Definition. The experimental region or design

space is the portion of the design variable plane which contains the
candidate optimum configurations. The upper and lower bocunds on
each of the design variables (X;, . . . , X;5 ) define the design space.
Inequality constraints on the independent variables and care to include
the true optimum configuration in the design space were factors in
placing upper and lower bounds on the 15 design variables comprising
the design space. The minimum combustor inlet temperature T, is an
example of a design space boundary formed by an inequality constraint.
Initially upper and lower bounds on the unconstrained design variables
are chosen such that the design space represents all feasible configur-
ations. As knowledge of the response surface is gained, the size of
the design search space which still contains the optimum configuration
can be reduced. Once the design space is defined, multivariable
search techniques are used to systematically explore the design space

for the optimum configuration at the specified design Mach number.

Direct Search Algorithms. Several well known direct search

algorithms (Table II) have been combined into a single computer
program called the Automated Engineering and Scientific Optimization
Programs - AESOP (Ref 14). The program AESOP is independent of -
the problem being solved. In aerodynamic configuration problems,
for example, the computer program containing the algorithm for the
evaluation of the configuration performance is linked to AESOP to
perform a systematic search for the optimum configuration. In the

cruise vehicle problem, for a given design Mach number M, , points
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from the design space were selected by a specified search algorithm in
AESOP and evaluated by the vehicle Design and Evaluation Computer
Program - DECP (Appendix E) until the maximum cruise range per-
formance and corresponding configuration were obtained.

Although nine search algorithms were available in AESOP, it
became evident in early searches that search algorithms (steepest
ascent, quadratic, and Davidon's method) requiring derivatives of the
performance function with respect to each of the search variables were
too time consuming. For example, since the derivatives must be
determined numerically, to find the gradient of the performance
function at one point on the response surface of a 15 search variable
problem required 30 evaluations by DECP. This required approxi-
mately 10 minutes of 7094 computer time. Furthermore, in the steepest
ascent method, the path of steepest ascent and the positive gradient of
the performance function coincide only if unit perturbations of each of
the search variables produce a similar change in the performance
function (Ref 14). In the case of the cruise vehicle problem, the effect
on the performance function of a unit perturbation of the equivalence
ratio A¢ =1 is large; whereas, a unit perturbation of the takeoff
weight AW, =1 is negligible. A weighting matrix can be chosen in
an effort to account for varying effects of a unit perturbation on the
performance function. The necessity of choosing a weighting matrix
in order to determine the true path of steepest ascent, however, makes
it questionable if the computational time required to determine accurate-
ly the gradient of the performance function was used most effectively.
Search algorithms available in AESOP which produced satisfactory
results for the cruise vehicle problem were the random point,
sectioning, and adaptive creep algorithms.

In the random point method, a series of design points are
selected from points which have uniform distribution throughout the
design space. The performance at these design points is evaluated one

by one and the design point with the highest value of the performance

22



function is retained. This method has an advantage in that its
effectiveness is independent of the shape of the response surface. The
method works as well on multimodal as on unimodal (single peak)
response surfaces. One disadvantage of the method is that, due to the
size of the design space, for most problems many points must be
evaluated before attaining a high probability that the best point selected
is actually at or near the optimum. The random point method was
used in this investigation during the early exploration of the design
space when the response surface of the criterion function was unknown.
Another method which is useful in the early phases of the
optimum configuration search is sectioning. Search by sectioning is
a series of one-dimensional searches along the entire ray in design

space parallel to each of the coordinate axes as shown in Figure 4.

RESPONSE
SURFACE

UPPER SEARCH

BOUND FOR Xy

FIG 4 Sectioning Search for Extremal Along
Ray Parallel to X; Axis

The one-dimensional ray in design space is formed by fixing all the
search variables except the one on which the search is to be performed.
The length L of the ray is determined by the upper and lower bound

of the design variable. Points are evaluated along the ray in order to
find the value of the sectioned variable which results in the highest

value of the performance function. The value of the variable giving



the maximum performance is retained and the process repeated for
each of the remaining design variables.

The adaptive creeper search method is another form of
sectioning. However, instead of searching along the entire length of
the ray parallel to the coordinate axis as in the section search, only
small perturbations are made in one of the independent variables.
Perturbations in the independent variable are continued until no
further improvement in performance is possible. When the process
har %.yen repeated for each independent variable in turn, a creeper
search cycle is completed. In the case where there is no interaction
between the independent variables only one search cycle is required
to locate a peak in the response surface. This case is illustrated in
Fig 5 for the contours of a performance function which he.).s two indepen-
dent variables. Usually, however, interaction between the independent
variables is present so that more than one search cycle is required to

locate the optimum. This case is also illustrated in Fig 5 where three

Xaf Xg
Start Start
X, ¥ X,
No interaction Interaction

FIG 5 Creeper Search With and Without Interaction
of Design Variables
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adaptive creeper search cycles would be required to locate the
optimum. The creeper method was effective in the cruise vehicle
optimization in the latter phases of the systematic search.

Figures 6 - 9 illustrate the performance of the random point,
sectioning, adaptive creeper, and steepest ascent optimum seeking

algorithms on a test function J
J =10 - (X2 -X)%+ (1-X)°) (10)

where the shape of the response surface is known. Contours of the
response surface of the test function are shown in the figures as well
as the starting point and search limits for all search techniques.
Although the response surface is unimodal, the search problem is not
a particularly easy one since a mild ridge is present in the response
surface.

All searches in the above example were terminated after 50
evaluations of the performance function. Progress during the search
is indicated in the figures by arrows and the number of evaluations of
the performance function required to arrive at the point. The results
of the example show the adaptive creeper to be most efficient while the
steepest ascent is least efficient in this example. It should be pointed
out, however, that the best search technique depends on design space
and response surface characteristics which, of course, are a function

of the particular search problem.

Termination of Search. The last step in the direct search for

the optimum cruise vehicle configuration is the termination of the
search. A total of approximately 3000 numerical experiments were
made on a IBM 7094 computer to obtain the optimum configuration for
the design cruise Mach number 8, 10, and 12 shown in the next chapter.
Searches were terminated when the gain in the performance function R
was less than 1% between search cycles. Searches were also started
from different points in the design space to examine the possibility of a

multimodal performance response surface. The response surface
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appeared to be unimodal, however, for a large region around the
optimum design point. In the region of optimum point the response
surface was relatively ' flat' so that a large number of configurations
correspond to nearly equal performance. This is illustrated in the

performance sensitivity analysis contained in the next chapter.
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IV, Analysis of Results

Results of this study are presented in two parts. The first
section deals with configuration characteristics of optimum range
hypersonic cruise vehicles; whereas, the second section deals with

performance.

Optimum Configuration Characteristics

The overall goal of this investigation was a fundamental analysis
of configurations in which the optimization process included the effects
of the interaction of the aerodynamic and propulsive flow fields.

Table lII contains the values of the independent variables which were
determined by the direct search methods discussed in the previous
chapter. The table also contains the dependent variables which were
calculated from equality constraint relationships as developed in
Appendix E. Together, the ind.pendent and dependent variables define
the vehicle configuration. The fuselage of the shapes shown in Figs 10,
11, and 12 are waveriders in that the edge of the inlet fences coincides
with the shock waves produced by the inlet-forebody. Thus, the fore-
body of the vehicle ' rides' on the contained plane shock waves.
Nozzle fences, also evident on the configurations maintain two-
dimensional pressure distribution on the aftfuselage.

The shapes were determined by directly relating geometry to the
flow field quantities surrounding the vehicles. Some of the flow field
quantities associated with the propulsive stream are shown in Figs 10 -
12. The Mach number can be seen to decrease between the entrance
and exit of the combustor which is characteristic of the constant area
supersonic combustion process. Figures 10 - 12 illustrate that the wall
static pressures at termination of the aftfuselage were above free-
stream pressure for the optimum configuration. Aftfuselage length and
hence nozzle expansion was terminated by the zero fuselage base
constraint in the case of the Mach 10 and 12 designs. Figure 11 shows

that further nozzle expansion was possible in the case of the Mach 8
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TABLE U

Configuration Definition Quantitics® for Design
Mach Numbers of 8, 10, and 12

QUANTITIES DESIGN MACH NUMBER
8 10 12
Independent
Inlet
0, dey 11. 36 8. 21 6.40
Te R 2000. 2000. 2000,
Combustor
¢ . 449 .50 195
L¢/hy 5.00 5.00 5.00
Nozzle
O deg 15.15 14,02 12.92
Ly/hg 1.5i 2. 36 2. 85
14/ ¢, 1.23 1.29 1.11
Wing
Ou deg 8. 80 7.41 7.18
Oy deg -5.32 -5.21 -5.25
0,2 deg 0. 0. 0.
AR . 345 . 240 . 245
Fuselage
a deg . 147 1.01 1. 05
6, deg 0. 0. 0.
Wio Ib 500, 000. 500, 000, 500, 000.
b/ h 1. 21 1. 33 1. 36
Dependent
6, deg 5.48 4. 81 4.12
L,;/1, . 781 171 L1777
4,/ ¢ . 219 . 206 . 204
he/ 2, . 0390 ., 0271 .0214
Sp/ b, . 374 . 306 .239
Lew/ 1, 3.20 3.17 2.99
bw/ £, . 273 . 185 . 148
c/t, . 791 . 769 . 606
p lb/ae? 13.73 12.10 9.44
N ft 52. 84 64.41 76.12
T, R 438. 3 443, 2 453,0

“Data obtained with structural parametcr set S values of: Wp/Wt, =.05
W,/ Wy, =.15 Wi/ Wiy= -5-fp =4.51L/t3, pr=4.51b/ 1t3,
pe=1801b/ft3, yg=7.51b/ ft.

29



b
%

s ==WNLET, NOZZLE FENCE

Performance (ctuise) Rropulsive
Altivede (initial) 112000. M ialet
Range M. am capture ares 799. 59 o
Velocity 4003, am/he eatraace
Breguet Range factes 9% am pressure + 00049 atm
Mach ' 8
M “
Fuselage Dimensions pressure N ) atm
length 169. 79 o Mach LT
height TSN
Combuster
Weight prossure 444 atm
takeolf $00000. » Mach %10
fractions tomperature 3000. R
payload / Weo . 080 oxit
structural ':I w . 388 pressure 1.373 atm
fuel Wt/ W . 842 Mach 184
equipment Wo/ W, . 190 tomperature 4478 R
Breguet Structursl Povifis hant sevle 1. 369
factor la (Wy/ Wg) . 463 Nessle-affuselage
oxit preseure ratie = 1. 03
Asrodymamic
Equivaleace raties
Angle of attack « 747 dog sopulsive .
Dysamie presoure 02 B/t :m Rt
Lift-drag ratio & 493 &
(power o) Bpecific impulse 2678, sec

FIG 10 Configuration and Characteristics of a
Hydrogen-Fueled Mach 8 Cruise Vehicle
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FIG 11 Configuration and Characteristics of a
Hydrogen-Fueled Mach 10 Cruise Vehicle
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FIG 12 Configuration and Characteristics of a
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design since the fuselage base is not zevo; however, the additional
nozzle forces which would be obtained by further expansion did not
compensate for the additional structural weight associated with the
increased fuselage length,

Takeoff weight, which was an independent design variable in this
study, and members of the structural set S listed in Table III deter-
mined the scale or dimension of the vehicles shown in Figures 10 - 12.
The cruise range also depends explicitly on the assumed values of the
set members; therefore, a range sensitivity analysis with respect to
each member of the set is contained in Appendix C. The sensitivity
analysis indicated that the cruise range either increased or decreased
monotonically in the investigated domain of the set members. Payload
density Pp: for example, did not have a natural optimum--higher pay-
load density produced higher cruise range. While the cruise range
depends explicitly on the values assumed for the structural set S, the
range factor shown in Fig 10 - 12 does not. The range factor will be
considered more fully when discussing the performance aspects of the
vehicle. First, however, the configuration characteristics of the
vehicle will be examined.

Insight into why a particular configuration was optimum can be
gained by exploring the design space in the vicinity of the optimum
point. Each figure in the series of Figs 13 - 14 and Figs 16 - 28
illustrates, for the Mach 10 configuration, the influence of the indepen-
dent design variables on the range factor, structural factor, and cruise
range R. The variation of cruise range R with each of the indepen-
dent variable represents one-dimensional ' cuts' in the response
surface around the optimum point. Aerodynamic and propulsive
efficiencies variations are reflected by the range factor; whereas the
volumetric efficiency is reflected by the structural factor of the Breguet

range equation repeated here for convenience
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range factor  structural factor
Ve — P —

R = L3 Vi tn (W./ W ]
= spl_vlz/voz n(i f) ()

D

Figures 13, 14 and 16 through 28 were generated by perturbing
one independent design variable at a time while holding the other
independent quantities (except nozzle length and equivalence ratio) at
the optimum values for the Mach 10 design. The nozzle length was
auto' atically reoptimized during the solution of Eq 1 and the equival-
ence ratio was adjusted when necessary to provide additional thrust to
satisfy the equilibrium flight constraint (thrust equal drag). In
discussing some of the characteristics of the optimum configuration, it
is convenient to divide the vehicle into components: inlet-forebody,

combustor, nozzle-aftfuselage, wing, and fuselage.

Inlet-forebody. Two independent design variables define the

shape of the inlet-forebody. One is the inlet ramp angle 0, which, in
addition to defining the profile of the underside of the forebody, also
controls the relative shock strength produced by the first and second
inlet ramps. From a propulsive efficiency standpoint, the goal of inlet
design is to achieve maximum pressure recovery. According to Orlov
(Ref 15) maximum pressure recovery occurs for the three shock inlet
of type considered in this study when the pressure rise across the first
two shock waves is equal. This result was confirmed in this investi-
gation; however, Fig 13 illustrates that, although the response surface
is rather flat near the optimum point, the optimum §; for maximum
range was greater than the 6; producing maximum pressure recovery.
The reason for the difference is apparent also from Fig 13 as the
volumetric efficiency of the vehicle (reflected by the structural factor)
increased as §; increased. Thus, consideration of the volume
producing aspects of the inlet-forebody resulted in a slight change from
the conventional one-dimensional goal of inlet design--that of maximum

inlet pressure recovery. This information could be used in future
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configuration optimization studies of this nature to limit the feasible
region of the design space. For example, the maximum pressure
recovery configuration inlet-forebody could be used as a starting point
with searches in the design space limited to those inlet-forebody
configurations with improving volumetric efficiency.

Whereas the first inlet-forebody design variable 6, defines the
inlet profile and relative shock wave strengths from the inlet ramps,
the second inlet design variable, combustor entrance temperature T,,
defines the total strength of the shock wave system. A higher com-
bustor entrance temperature requires a stronger inlet shock wave
system which in turn demands a greater deflection of the propulsive
stream. Thus, in terms of configuration geometry, the combustor
entrance temperature defines the inlet-forebody length to thickness
ratio. Figure 14 illustrates that the trade off between the structural
factor and range factor with varying combustor entrance temperature
resulted in a rather flat response surface; however, in the region of
allowable solutions (T4 = 2000 R) a combustor entrance temperature
of T4 = 2000 R produced maximum range. This is an interesting result
since vehicle thickness, necessary to provide volume in the vehicle, is
automatically provided by the propulsive constraint (T, = 2000 R
autoignition temperature for hydrogen air mixture). The thickness
ratio of the Mach 8, 10, and 12 designs can be observed from
Fig 10 - 12 to become progressively finer as the flow deflection needed
to produce the required shock strength is reduced as Mach number
increases.

An interesting characteristic of the forward section of the vehicle
is that it produced very little lift as shown in Figure 15. In fact,
neglecting friction, at zero angle of attack and zero angle of incidence
of the upper surface of the fuselage, the lift produced by the forward
section of the vehicle is zero. The force in the lift direction produced
by pressure acting on the underside of the forebody is cancelled by the

downward pressure force acting on the inlet cowl. The zero lift result
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may also be deduced from a simple momentum stream tube analysis,
since for zero angle of attack and the shocks focused on the cowl lip,
the inlet-forebody does not produce a net downward deflection of the
inlet flow. A pitch up moment was produced by the forward section of
the vehicle, however, which is reflected by the rearward placement of
the wing on the configuration shown in Figures 10, 11, and 12.

An argument for the shock on lip at the design point constraint
used in this study can be made using the stream tube analysis and some
results of the study. When the shock pattern is focused ahead of the
cowl lip, a downward deflection of the flow field occurs and the inlet-
forebody becomes a wing in the sense that it produces lift, although
with a highly compressed air flow. According to Kuchemann (Ref 3),
it is not aerodynamically efficient to produce lift with a strong shock
wave system. This fact was also evident from the range factor vari-
ation with lower wing surface angle §;; shown in Figure 21. The aero-
dynamic efficiency, as reflected by the range factor, decreased with
increasing shock strength since the strength of the shock wave pro-
duced by the wing increased with increasing lower wing surface angle.
Thus, air which has been compressed by the inlet-forebody should be
used in the propulsive stream (shock on lip) rather than to provide lift
(shock ahead of lip) for optimum performance at the design point. Off
design performance of the inlet was not included in this investigation;
however, other studies (Ref 16, Ref 17) have shown the performance
penalty to be small when fixed geometry inlets of the type considered
in this investigation are operated below the design Mach number.

Combustor. Equivalence ratio ¢ and nondimensional combustor
length £,/ hy are the independent design variables associated with the
combustor midsection of the vehicle. As explained in Appendix E, the
vehicle design problem was formulated such that the wing planform
area was adjusted to generate drag to balance thrust produced at a

given equivalence ratio. This is the inverse of the conventional
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situation where vehicle geometry is fixed and the equivalence ratio is
adjusted (by throttle setting) to maintain equilibriumr flight during
cruise. Hence, in the present vehicle design formulation, wing plan-
form area Sp increased with increasing equivalence ratio ¢. This is
reflected by Fig 16 as the structural factor decreased with increasing
equivalence ratio illustrating that wings were not volumetrically
efficient compared to the fuselage of the vehicle.

As the planform area S_ of the wing decreased, the center of

pressure of the wings moves fearward in order to maintain a trimmed
condition. The trim constraint indicated in Fig 16 occurred when the
wing had moved rearward to a position such that the common wing-
fuselage length was zero (£, - L., = 0). Although the optimum equiva-
lence ratio occurred at the trim constraint, from a practical standpoint,
some common wing-fuselage length (£} - f.y) Would be necessary in
order to attach the wings to the fuselage without resorting to booms or
other such devices. Figure 16 illustrates that the performance penalty
for increasing the common wing-fuselage length was slight. The
configurations in Figs 10 - 12 are shown with a common wing-fuselage
length of (£}, - £oy)/ 1, equal to three tenths. Figure 16 also illustrates
that only a small performance gain could be obtained by relaxing the
trim constraint, since the range for a wingless body (Sp = 0) was only
slightly greater than for a configuration with sufficient wing to

maintain trimmed flight.

The combustor length £, specifies the length of the combustor as
well as the length of the midsection of the vehicle. Although the
structural factor increased with increasing vehicle midsection length,
the range factor decreased at an even faster rate due to skin friction
drag in the combustor as shown in Figure 17. Since the chemical
kinetics of mixing, ignition, and burning were not considered in the
combustor synthesis (only the initial and final states of the fuel-air
mixture are considered), nothing can be said about the optimum length

of the combustor from this investigation other than that the combustor
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should be as short as possible. A combustor length to height ratio of
44/ hy = 5, which was chosen as a lower constraint, resulted in a
physical combustor length of £, ~ 10 ft for the three Mach number
designs which provides a reasonable length for combustion to take

place (Ref 18).

Nozzle-aftfuselage. Three independent design variables (65 , £,

l¢) determine the geometry of the nozzle-aftfuselage of the configura-
tion shown in Figures 10 - 12. The underside of the aft-fuselage
provides an expansion surface for the combustor gases, thereby
forming, along with the nozzle cowl! and fences, a two-dimensional
asymmetric nozzle. The nozzle can be configured so that the resultant
nozzle force direction 6 (6 measured from a plane perpendicular to
the flight path) is in the direction of lift (61 = Oo) or in the direction of
thrust (6 = 90°). Thus, the possibility of an optimum force direction
O exists.

Swithenbank (Ref 17) suggests the optimum nozzle-aftfuselage
configuration for the two-dimensional asymmetrical nozzle would be
obtained when the resultant nozzle force direction 6, in terms of the

quantities defined in this investigation, is given by

tan O '(%)w (11)

Appendix B contains the development of Eq 12 which is a more
general expression than Eq 11 for the nozzle force direction angle fr

producing a stationary value of the range factor:

CT EaT
tan eTst (£ 1 8CT (12)
! -(D, Tt %7

If the term 8Cy /86 T which represents the change of nozzle force
coefficient CT with nozzle force direction 6t is zero, as is usually

the case for symmetrical nozzles, then Eq 12 reduces to Eq 11 the
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result quoted by Swithenbank.

Equation 12 iy essentially an expression indicating how the force
recovered from the propulsive stream should be used to obtain optimum
performance. If the wing is aerodynamically efficient (high L/ D) and
the thrust magaitude is independent of direction (8CT/ OOT a 0), then
the noszle force direction should be nearly aligned with the vehicle flight
path (6 ~ 90°). This is the case for most classes of subsonic and
supersonic vehicles where the axis of the symmetrical engine nozzles
are aligned with the reference axis of the vehicle. On the other hand,
if the wings are inefficient converters of thrust to lift (low L/D), or if
the loss in nozzle force with increasing O is large, then Eq 12 indi-
cates the nozzle configuration should be such that some lift is produced
directly from the nozzle. This was the case for the class of vehicle
configurations considered in this study, since Fig 15 illustrates that
about 75% of the lift was produced directly by the nozzle-aftfuselage
of the Mach 10 configuration.

In terms of vehicle geometry, a nozzle-aftfuselage designed to
produce a force direction angle indicated by Eq 11 (6 = 76° for
(L/ D)y = 4) would have a large nozzle expansion half angle 85 and/ or
a long nozzle cowl {;. For example, a noszle force angle of O = 76°
and a nozzle cowl length of £ = 0, implies a nozzle half angle of §; = 76°
for maximum range factor. Figure 18 illustrates maximum range
factor was obtained at 085 ~ 15° for the Mach 10 configuration. The
consideration of the structural factor shifted the optimum &g for
maximum cruise range shown in Fig 18 to a slightly lower value than
the 8; for maximum range factor. At lower values of 85, more
nozzle lift is produced allowing a smaller wing which improves the
volumetric efficiency of the vehicle. Reference 19 reports that a
survey of hypersonic cruise vehicle configurations, asubmitted by
aircraft companies in response to a proposal request by the United States
Air Force, revealed the nozzle half angle 8 of the configurations to be
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approximately 15 degroees.

Although Fig 19 shows that nozzle cowl length £, for maximum
range factor occurred in the search domain, the decrease in structural
factor with increasing cowl length caused the value of £ for maxi-
mum range 1o occur at the minimum allowable length. As explained
in Appendix E. the minimum nozzle cowl length was constrained such
that the first down running characteristic or Mach line from the nozzle-
aftfusclage expansion corner strikes the trailing edge of the cowl.
However, Fig 19 illustrates low sensitivity of cruise nt;'go with nozzle
cowl length in the region of the constraint, indicating the constraint
value was at or near the optimum value.

The optimum nozzle length {5 occurred in the search interval
for the Mach 8 design and at the zero base constraint for the Mach 10
and 12 designs. As shown in Fig 20, range factor increased with
nozzle length, while the structural factor decreased. Thus, the sensi-

tivity of range with nozzle length was low in the region of the optimum.

Wing. Optimum values of the independent configuration
definition quantities associated with the wing (853 ., 84 . 8,2, MR) are
shown in Table lll. The insensitivity of cruise range with respect to
the wing parameters, expecially the parameters (§y , AR), accounts for
the absence of a trend with design Mach number for optimum values of
the wing parameters. Figure 15 illustrates a reason why performance
was insensitive to values of the wing parameters as the wing lift is
shown to constitute only about 10 per cent of the total vehicle lift. An
inspection of Fig 21 reveals that the optimum lower wing surface
angle §;; occurred in the domain of the variable as a result of a trade
off between the range factor and structural factor of the Breguet range
equation. Figure 22 indicates that maximum range was obtained when
the upper surface of the wing 6 was positioned to provide lift
(negative incidence to the freestream flow) rather than to provide wing

volume. Figure 23 illustrates that maximum range was obtained when
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the side surface of the wing §;; was at zero incidence with the

ll:eo stream. Leading edge wing drag was a factor in the optimum wing
being of low aspect ratio. However, if it were necessary to increase
the wing aspect ratio due to takeoff and landing ‘conuiderations, for

example, Fig 24 shows that the performance penalty would be small.

Fuselage. Four independent design quantities are associated
with the fuselage (a, 8y, Wi, b/ h). The optimum angle of attack a
for the three design cases, as shown in Table IlI, was approximately
one degree. A positive angle of attack permits the underside of the
cowl to become a lifting surface. The lift provided by the cowl reduced
the size of the wing which is reflected by the increasing structural
factor with increasing angle of attack shown in Figure 25.

Although the upper fuselage surface angle §; was constrained
to be positive, a variable angle of attack allowed the upper fuselage
surface to assume negative angles of incidence with respect to the
free stream flow. Thus, the upper section of the fuselage could be
positioned *o provide lift or additional fuselage volume. Since Fig 26
was generated with an angle of attack of one degree, Fig 26 shows
that more cruisc range was obtained when the upper portion of the
fuselage provided lift rather than volume, even though volumetric
efficiency (as reflected by the structural factor) increased with
increasing upper fuselage surface angle. Figure 26 also indicates
maximum cruise range was obtained at the lower constraint boundary
(67 = 0) as a result of the trade off between the range factor and
structural factor.

The vehicle design takeoff weight Wty for maximum cruise
range occurred at the constraint boundary of 500, 000 1b for all three
Mach number designs. The predominant effect of variable takeoff
weight is to change the dimensions of the vehicle through the scale
factor £, of the vehicle. For a given geometrical shape the ratio of

enclosed volume ¥ to wetted area A, increases with increasing
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dimensions. The volume-wetted area ratio of a sphere, for example,
increases in direct proportion to the radius. The increasing volume-
wetted area ratio is reflected by the increase in structural factor with
increase in design takeoff weight as shown in Fig 27 for the Mach 10
configuration. The trend of increased performance with increased
size is evidenced in the subsonic cruise regime also by the appearance
of larger jet aircraft such as the Boeing 747,

Width of the fuselage b was specified by the fuselage width to
maximum thickness ratio b/ h. The optimum value of the width to
thickness ratio occurred as a result of a trade off between the range
factor and structural factor as shown in Figure 28. Aerodynamic
performance increased as vehicle width increased as a result of the
friction drag of the vehicle sides (which is nearly constant) becoming a
small percentage of the total drag as the width of the vehicle increased.
Volumetric efficiency of the vehicle, as reflected by the structural
factor in Fig 28, decreased with increasing fuselage width to thickness
ratio after obtaining a maximum at width to thickness ratio of

approximately one.

Range Potential
In addition to determining characteristics of optimum

configurations in which lift, propulsion, and volume are integrated, a
second objective of the study was to determine the possibility of range
potential increase with increased design cruise Mach number. Range
potential, as reflected by the range factor rather than absolute range,
is treated here since the detailed weight and trajectory analysis
necessary to determine the absolute level of range, was beyond the
scope of this investigation. Figure 29 indicates for the cruise Mach
number regime considered in this investigation (8 - 12) that the range
potential increased with design cruise Mach number for the case
without skin friction; however, for the case with skin friction, little

change in range potential occurred with cruise Mach number.
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Figure 29 also indicates that skin friction places an important
limitation on the range of vehicles in the Mach 8 to 12 cruise regime.
A partial reason for this is illustrated in Fig 30 as friction drag is
seen to become an increasingly higher percentage of total drag as the
cruise Mach number increases since the pressure drag coefficient
decreases. The decreasing pressure drag coefficient with Mach
number is due to the decreasing thickness ratio of the vehicle since the
deflection required to produce compression waves that will produce a
combustor entrance temperature of T, = 2000 R decreases as design
Mach number increases.

Another reason for the high sensitivity of hypersonic cruise
vehicles to skin friction is the high dynamic pressure of the propulsive
stream which comes into contact with certain components of the vehicle,
especially in the final stage of compression. In the case of the Mach
10 design, for example, the dynamic pressure at the entrance of the
combustor is approximately 12 times that of free stream,

The cooling constraint, fuel required for regenerative cooling of
internal surfaces of the propulsion system and the leading edges of the
vehicle be less than or equal to fuel required for propulsion (¢, = ¢),
was not encountered as shown in Figs 10 - 12; therefore, the constraint
did not affect the range potential of the optimum configurations.
Appendix D contains a breakdown of the regenerative cooling require-
ments of the various components of the Mach 12 vehicle. Of the
components considered, the combustor required the most active cooling

while the leading edges of the vehicle required the least.

Comparison of Performance

The Breguet range factor is shown in Fig 29 for subsonic jet
transports, supersonic transports, and a hypersonic (Mach 4 - 8)
transport which was based on a performance study (Ref 20}. Since the
assumptions and conditions under which the values of Breguet range

factor of these vehicles were obtained are not the same, the range
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potential of these vehicles is shown only to serve as a general guide to
comparison of the cruise regimes. Figure 29 illustrates that the
attractiveness of hypersonic cruise in the Mach 8 to 12 speed regime,
from the standpoint of range potential increase over cruise below Mach
8, depends heavily on the level of skin friction drag. The lower the
skin friction--the more attractive hypersonic cruise becomes.

Also included in Fig 29 is the range factor obtained by Williams
(Ref 8) in a cruise vehicle optimization study. The study did not
include the effects of skin friction; therefore, his result should be
compared to the zero skin friction curve of the present study shown in
Figure 29. The model for the optimization study by Williams contained
three independent variables which were, in terms of the nomenclature
used in this study, (8,, 6,, 05). For the case of maximum range
factor, which was the performance criterion for his study, the values of
0, and §; obtained in both studies agree (0, opt ¥ §, for maximum inlet
pressure recovery, and 0, opt = 0). However, his optimization model
did not contain sufficient degiees of freedom to obtain higher perform-
ance which is a danger at any level of solution of optimization prob-
lems. If his model had included wings and or a variable equivalence
ratio, the nozzle geometry would not have been constrained to produce
equilibrium flight which resulted in the lower value of range factor
shown in Figure 29.

Figure 3] contains a comparison of specific impulse Isp data
obtained in the present study and typical lsp data obtained from one-
dimensional supersonic combustion cycle analysis studies of hydrogen
and air (Ref 17). Figure 31 illustrates that the specific impulse
obtained from the present study decreases at a faster rate with
increasing Mach number than the specific impulse obtained from the
one-dimensional data. This is due to the fact that propulsive efficiency
of the optimized configurations was traded for increased aerodynamic

cfficiency as design cruise Mach number increased. The objective of
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this investigation, however, was not to optimize a configuration based
on the propulsive efficiency alone, but rather the geometry of a config-
uration in light of the combined propulsive, aerodynamic, and volumet-

ric efficiencies. The main ideas of this chapter are summarized in the

next chapter.



V. Summary and Conclusions

The optimization process was applied to the design of an air
breathing hypersonic cruise vehicle configuration. Emphasis was
placed on relating the configuration performance directly to the sur-
rounding flow field so that any interaction between the aerodynamic and
propulsive flow field would be accounted for in a fundamental manner.
Cruise range, as determined from the Breguet range equation, was
selected as the performance criterion for the optimization process with
payload fraction becoming one of the constraints. The general class of
vehicles which were optimized cruise in the Mach 8 to 12 speed regime,
utilize a constant area supersonic combustion ramjet engine which
burns hydrogen fuel, and can be characterized geometrically as two-
dimensional wedgelike wing-body vehicles.

A generalized configuration model was defined by discrete
parameterr, transforming the variational optimization problem to a
discrete o) static optimization problem. Automated direct search
algorithms were then used to determine the discrete parameters
defining the configurations producing maximum cruise range for design
cruise Mach numbers of 8, 10, and 12.

Within the limits of the analytical model used, the following
qualitative conclusions can be deduced concerning the cruise config-
uration of the class of vehicles considered in this investigation:

(1) The optimum configuration flies at about zero angle of
attack.

(2) Although developing very little lift, the inlet-forebody
produces a pitch up moment.

(3) Inlet-forebody compression ramp configuration for maximum
range differs {rom the inlet-forebody configuration producing maximum
pressure recovery (see Fig 13).

(4) Inlet-forebody thickness ratio is determined by the minimum

shock wave strength necessary to produce the autoignition air
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temperature at the combustor entrance .

(5) Optimum combustor-midsection length of the vehicle is the
minimum combustor length which allows for mixing, ignition and
burning of the fuel.

(6) Optimum nozzle-aftfuselage configuration is one which
produces a resultant nozzle force direction 6 consistent with the

expression derived in Appendix B:

ot

LB w

an Topt " (£ uanc'r
T

(7) Maximum range is obtained when the upper surface of the
fuselage is nearly parallel to the free stream flow.

(8) Range performance increases with takeoff weight which is
consistent with the ' cube-square law'' preferring largest possible
scale from a volumetric efficiency standpoint.

(9) Volumetric efficiency dictates a fuselage width slightly
greater than the fuselage height (at the highest point) for maximum
range.

(10) The wings of the optimum cruise configuration are small
with approximately three-fourths of the total lift provided directly by
the propulsive system.

In addition to the above conclusions concerning the cruise
configuration of the vehicles, several qualitative conclusions can be
deduced concerning performance trends:

(1) Range potential (Breguet range factor) increases with
velocity as anticipated from the Breguet range equation for the case
without skin friction. However; for the case with skin friction, little

change in range occurs with velocity.
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(2) Range factors of approximately 10000 nautical miles are
indicated for transport type vehicles which cruise in the Mach 8 to 12
regime.

(3) The cooling capacity availablie in the liquid hydrogen fuel
required for propulsion is adequate for cooling in the Mach range (8-12).

In regard to the direct method of configuration optimization,
several factors can be noted.

(1) Inthis investigation, nongradient search algorithms were
more efficient than gradient techniques such as the steepest ascent.

(2) Of the nongradient search algorithms, random point and
sectioning were effective in the early phases of the search; whereas,
the adaptive creeper search algorithm was effective in the terminal
search phase.

(3) The performance response surface appeared unimodal in the
region of the optimum and very flat so that a large number of config-

urations produced approximately the same performance.

Since the mathematical formulation of the problem did not
include all classes of configuration or consideration of all constraints,
influences, etc., the optimized configurations obtained in this investi-
gation are not expected to offer a final solution to the optimum cruise
vehicle problem. However, in addition to the fundamental configura-
tion and performance results enumerated above, the investigation can
contribute to a final solution by serving as a guide and as a comparison
point for future configuration optimization studies in which the
performance is related directly to the flow field.

Future work might include extension of the present model of the
wedgelike wing-body class of vehicles to include subsonic combustion,
or formulation of a new model to investigate another geometric family
of shapes such as the conelike class of vehicles. In the more distant
future however, as techniques progress for predicting the flow field

about arbitrary three-dimensional shapes, as computers grow in size
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and speed, as optimizing search algorithms become more efficient,
the goal of configuration design will perhaps be realized. That is--when
the configuration is shaped more by the jhysical aspects of the problem

and less by the intuition of the designer.
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Appendix A

Cruise Trajectory Equations

The purpose of this appendix is to trace the development of a
form of the Breguet range equation from the differential equations
describing the state of the vehicle during the cruise portion of the
mission profile.

With reference to Fig 32, the equations of motion of the vehicle
(Ref 21) can be written for a nonrotating spherical earth in a wind axis

coordinate system as

w dv, "

e dt 2 T-D-Wsiny (Al)
2

l vl gz = L 0 w cOos Y + !- M'_Z (AZ)

g, dt c Ht r,

From Fig 32 the rate of change of altitude and ground range is given

by

dH :
dt = V,; siny (A3)
dR Te
at = H+ T, V), cos ¥ (A4)

The differential equation describing the rate of change of weight of the
vehicle in terms of thrust and specific impulse is

dw T

—_— =

dt Y " Tep (A5)

Numerical methods are in general necessary to integrate Eqs Al
through A5 simultaneously from start to termination of cruise in order
to determine the cruise range. If certain assumptions are made;
however, the cruise range can be simply expressed as an ordinary

function commonly referred to as the Breguet range equation. The
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FIG 32 Cruise Trajectory Parameters
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required assumptions are:
. A zero flight path angle, ¥ = 0.
2. A constant flight path angle, %tz = 0,
3. A constant cruise speed, -:Tv‘ s 0,

4. A cruise altitude small compared to the radius of the
Fo
earth, Her, s 1,

With the above assumptions Eqs Al - A4 respectively become

T s D (A6)
o-5)
icte
H s constant (A8)
R = ftf V| dt (A9)
ti

Equation A9 is integrated by changing the integration variable
from time t to weight W

W
aw
R = / Vi Taw/ ay (A10)
L£

and by using Eqs AS through A 7 in Eq Al0

f
R = /W & 1ep A d:vv (A1)

Wi 1= cFe

o
o

The final form of the Breguet range equation is obtained by

assuming that the bracketed term in Eq All is a constant for constant

velocity cruise and noting that g.r, = V¢,3

L \4 w;
R = T Isp T V'L[/ VO, in W, (A12)
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The form of the Breguet equation used as the performance
criterion is obtained by substituting Eq A5 and A6 into Eq Al2

L v Vi
R = o 1-v,’l/v;" In W, (A13)

The range of each trial configuration during the optimization
process was estimated with a range factor (the bracketed terms in
Eq All and Al3) evaluated at initiation of cruise. In order that the
range factor remains constant for the cruise segment (necessary for
the integration of Eq All), the vehicle is assumed to climb during
cruise as fuel is depleted (maintain W/py = const.). A slight
acceleration is induced, however, for a constant Mach number cruise
as temperature of the standard atmosphere increases with altitude.
For example, the initial and final cruise altitudes of the Mach 10 cruise
vehicle were 115,000 ft and 124,000 ft respectively, which resulted in
an ambient temperature increase of 14 R and an acceleration, to
maintain constant Mach number cruise, of dV, / dt = 1.88 x 10-’3.

The change which occurs in flight path angle ¥ due to the
altitude change is also slight. Thus, estimating the range at initial
cruise and flying the constant Mach-varying altitude trajectory results
in a reasonable cruise range prediction for the trial configurations

evaluated during the optimization process.
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Appendix B

Expression for Optimum Nozzle Thrust Angle
The purpose of Appendix B is to develop an expression for the

nozzle thrust angle 61 which produces a stationary or extremum
value (if one exists) of the Breguet range factor.
Starting with the expression for the range factor

L Vs
we 1-Vv/vy

RF = (Bl)

and noting that for a fixed cruise speed the only variable term in Eq Bl

is L/ wg which can be expressed as

L Lw + Lp + Lp

- = B2
wg (/R T )A V61, (B2)
where the wing lift L is given by
. L
Ly = (F, sin 61 - Dy) (BL (B3)
and the nozzle lift is given by
L, = Fj cos Op (B4)

Dividing numerator and denominator of Eq BZby {; b and nondimen-

sionalizing the forces by p; {; b results in the following expression

% (C nnG - cDbl (vL t O, + CT cooO h

f (A, Vi ¢£)/ (R, Ty bLy)

Applying the necessary conditions for an extremum with respect
to the nozzle thrust angle to Eq B5, and noting that terms in the
denominator of Eq B5 as well as CLb' CDb' and (L/ D)y, are

independent of @, results in
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(o}
L /wp) T
”T (D) (C-r cos 6y + T sin O.r)

+

(B6)

cos 0 -C.r sin O.r s 0

Dividing Eq B6 by cos O.r and rearranging, produces an expression
for the nozzle force direction angle producing a stationary value of the

range factors

IR Y SRR )
W RE S B E

Since the nozzle thrust direction 6T is a function of the nozzle

(B7)

half angle 85, Eq B7 can also be used to determine the 8; producing
an extremum value of the range factor.

As an example, Figs 34 and 35 show the variation of nozzle
force coefficient CT and direction 6T respectively as a function of
nozzle half angle 8; for a configuration of the class investigated in
this study. In order to determine 6T, and 8; 4 for a configuration
with a wing lift-drag ratio of (L/ D)y, = 5.5 and an equivalence ratio
of § = .8, atrial value of 8y, = 16° is assumed. This allows the
unknown term in Eq B7 to be evaluated graphically from Figs 34 and
35
(B8)

1 8Ct 1 %rt) (8%, 1
Cr o0y (cT ao,) (oo.r - () =z

substituting into Eq B7

t‘n 0 - 50 5 - lo 27
Tet 1+ (5.5)(1.27)

= ,530 (B9)

which implies aT.t = 27.9°, and from Figure 35, Os . = 15. 8°.
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This indicates the optimum nozzle half angle for maximum range
factor predicted by Eq B7 is in the neighborhood of 16° which agrees
reasonably well with the numerical solution of the range factor (Eq Bl)

as shown in Figure 36.
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Appendix C

Performance Sensitivity with Respect to the Structural Set
Parameters

In order to evaluate the structural factor (hence the cruise range)
during the optimization of independent design variables, it was neces-
sary to specify values of certain parameters. These parameters were
termed the structural parameter set g and consisted of

=B [ Ve Ve Yy

S = pe'pP' Pg: Wiy ’ Wto’ Wio Vs ] (e
Sensitivity of the cruise range and structural performance with each
member of the set S is shown in this appendix using the optimal Mach
10 design as a source for the value of the range factor (RF = 11191 nm)
and geometrical shape quantities.

The geometrical shape provides a constant value of the
nondimensional volume (¥ / £, = ., 2367) and surface area
(Aw/ l,z = 4,568), For a fixed takeoff weight (wto = 500, 000 1b)

Eq E37 (Appendix E) becomes a cubic equation in the unknown scale

factor I,

( ¥ ) (:s Aw) 1 ‘XP b
— 14 +|\— 7)) 4H*-wW [— 1 - -== ]+
ll f -‘l tO pf Wto wto

1, Y __1_],,0
topP wto pe

(C2)

L,i

+

£

Once the scale factor £, is known, the structural weight is determined

from
Aw
2
ws = ‘ll ) Ys ‘l (C3)
and the fuel weight from

Wep = Wy - W - W - W (C4)
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The structural factor of the Breguet range equation SF can now

be evaluated from

wfc wfl
w w
il to
SF = In 1 + W we ws (C5)
=2 + = ;=
L wto wto wto

Thus, the cruise range R can be determined for a constant

range factor RF, since

R = (RF) (SF) (Cé)

Figures 36 through 43 were generated by varying the members
of the structural parameter set one at a time while fixing the remain-
ing members at the values used in the optimization study as shown in
Table IIIl. Since the range factor is constant, the percentage change in
cruise range and structural factor is shown on the same ordinate in the
figures. Figure 36 shows that the range was insensitive to wide vari-
ations of the equipment weight density. The performance is also shown
in Fig 37 to be insensitive to payload density for perturbations about
Pp = 4.5 1b/ ft* (density of airliner passenger compartments with
people aboard).

Although the density of the liquid hydrogen fuel is fixed, Fig 38
is included to show, from a structural standpoint, how the performance
increases as the density of hypothetical fuels increases. The fuels
would have the same energy content per pound as hydrogen but with
different densities. As a means of comparison, jet fuel (JP-4) has a
density of approximately 50 1b/ ft>; whereas, the density of liquid
hydrogen is 4.5 1b/ ft3. Unfortunately, the energy content and heat
sink capacity of JP-4 is very much lower than liquid hydrogen so that
JP-4 is not considered an attractive fuel for the class of vehicles

considered in this study.
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Figure 39 illustrates that the cruise range increased as the
amount of fuel consumed during cruise increased. This parameter,
although producing a large change in the level of the range, does not
have a large effect on the configuration of the optimized vehicle, since
the level of range performance for all trial configurations are affected
approximately the same.

Figure 41 illustrates that a 30 percent increase in the nominal
payload weight fraction resulted in only about a 5 percent reduction in
cruise range. Since the payload and fuel densities are equal, the scale
factor (and hence the physical dimensions of the vehicle), remains
constant with variations of the payload weight fraction. Passenger
compartments and fuel tanks, for example, could be interchanged in a
vehicle of fixed dimensions to accomplish a range-payload trade off.

Cruise range variation with the proportionality constant Vg
which relates surface area of the vehicle to structural weight of the
vehicle, is shown in Figure 42. In addition to having a pronounced
effect on the level of the cruise range, the area-weight parameter also
influences the optimized configuration. The greater the value of the
area-weight parameter--the more important the volumetric efficiency,
as reflected by the structural factor term of the Breguet range equation,
becomes in determining the optimum configuration. Configurations
optimized under the higher area-weight parameter would reflect great-
er volumetric efficiency at the expense of aerodynamic and or
propulsive efficiency. For example, an area-weight constant greater
than the nominal (7.5 lb/ ft?) would produce a sharper increase of
structural factor with the first inlet ramp angle 6, shown in Figure 13,
This would result in a higher value of the optimum inlet ramp angle,
Thus, the qualitative influence of a value of the area-weight parameter
other than the nominal on the configuration can be deduced from an
analysis of the performance sensitivities of the independent configura-
tion definition quantities. It can be noted from Figs 10 - 12 that the

nominal value of area-weight parameter used in this study resulted in
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structural weight fractions for the optimum configuration of
W./ wto = ,258, .284, and .296. These values agree with the value
of W./ W.,®+27 used as a baseline in a wing structure study of a

Mach 8 cruise vehicle (Ref 10).
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Appendix D

Vehicle Cooling Requirements

Surfaces of the vehicle which cannot radiate to the surrounding
space the heat produced by aerodynamic friction and combustion must
be actively cooled. In addition, the aerodynamically sharp leading
edges of the vehicle and wing (one-tenth of an inch diameter assumed
for this investigation) may also require active cooling.

The purpose of this section is to develop the equations which
indicate the amount of fuel needed to regeneratively cool internal
surfaces of propulsive components, as well as the leading edges of the
vehicle and wings. The fuel-air ratio required to cool the i-th surface
is computed by equating the heat absorbing capacity available in the

fuel diverted past the area Aw; of the i-th surface

Qci = wy.

to the convective heat rate to the i-th surface

th Y vi Sti (Habwi - Hwi) Awi (D2)

If the cross sectioned area of the propulsive stream Ap, is evaluated
adjacent to the i-th surface being cooled Awi ,» then equating Eqs Dl
and D2 results in an expression for the fuel-air ratio needed to provide

coolant fuel for the i-th surface

A S¢.
£, 0= (X il H - H (D3)
cj APi L ( :o.bwi wi )

or in terms of the equivalence ratio

fci .
be; = I (D4)
s
Equation D3 and D4 were solved for the following surfaces
wetted by the propulsive stream: combustor, second inlet-forebody

ramp and fences, inlet cowl and sides, nozzle cowl and sides,
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nozzle-aftfuselage back to a point opposite the nozzle cowl.

The Stanton number was computed from the skin friction
coefficient using Reynolds analogy Sti = Cfi/ 2.

The expression for laminar heat transfer to the stagnation line of

an unswept cylindrical leading edge is given by (Ref 22)
3.15
. v, ) W, g
qstag = 627, lZ(-—;lo rn (D5)

Assuming a cosine distribution of the heating rate about the
stagnation point (Ref 23), the heat rate to the surface of the half
cylinder leading edge is given by

Qe ™ 5 ble Ustag (D6)

where b‘e is the combined leading edge width of the vehicle nose,
cowl, and wings, The amount of regenerative cooling needed for the

leading edges is found by equating Eq D1 and D6

2r by q
n ‘e ‘stag
= D7)
¢ ‘e fs pl Vl é AC (
Table IV illustrates for Mach 12 cruise, which is the most
severe case, that cooling requirement for the leading edges of the
vehicle was small compared to cooling requirements of the other

components.
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TABLE 1V

Component Cooling Data For Mach 12 Configuration

Skin Friction Reynolds Cooling
Component Coefficient Number Equivalence Ratio
Cs R, $c
end.inlot.t4mp 636 x 107" 1.45 x 10° . 0687
and fence
intst cowl.nd 1.10x 107> 5,68 x 10" .0778
sides
combustor and 1.6x 107> 3.19x 107 . 1598
nozzle cowl
nozzle-aftfuselage 2.13 x 1072 1.72x 10" .0238
vehicle leading 0015
edges
Total .3316
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Appendix E

Vehicle Design and Evaluation Computer Program

The problem of formulating the vehicle design and evaluation
computer program can be broken down into three areas: first, the
identification of quantities needed to define geometrically a configura-
tion in the general class; second, the formulation of methods to predict
the flow field properties about the configuration; and third, evaluation

of the configuration performance.

Configuration Definition

Some of the quantities necessary to define geometrically a vehicle
configuration of the class considered in this investigation can be arbi-
trarily chosen (independent) while others are calculated (dependent)
from constraints. The purpose of this section is to formulate a set of
independent configuration design variables and the constraint equations
from which the dependent variables can be determined. In order to
accomplish this aim, it is convenient to separate the vehicle into
components: inlet-forebody , combustor, nozzle-aftfuselage, wing,

and fuselage.

Inlet-forebody. In general, six geometric quantities (£;,{;, {,,
hy, §,, 0;) are required to define the inlet-forebody configuration as
shown in Figure 43, It is essentially a two-dimensional double ramp

inlet with a three-shock wave external compression system, with fences
extending from the nose of the vehicle to the leading edge of the inlet
cowl to contain the inlet air flow.

If it is assumed that at the design point the shock wave pattern is
specified (shock on inlet cowl lip in this study), the number of variables
needed to define the inlet configuration is reduced. Once the ramp
angles (§,, 0;) are specified, the flow turning angle of the inlet cowl
(63= 8, +8;) is known and the shock wave angles (6,, 0;, 0;) can be
calculated from the oblique shock relations (Ref 24). The variables
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(£,,2;,15,h must then be related in such a manner that the shock
waves from the double ramp inlet meet and reflect from the edge of the
cowl to form a third shock wave. The third shock is cancelled by the
appropriate turning angle at the top of the combustor entrance. The
relationship among the variables ({,,£;,43,hs) can be expressed in

equation form by using the geometry of Figure 43:
(4, + £, -Ly)tan @, =2, tan 6, + £, tan (6, + 8, ) + £, tan (05 - O)
(El)
(£ - £3) tan (6, + 8,) = £, tan (8, + 8;) + £, tan (6, - 8s) (E2)

hy = 1y tan (65 - 8y) (E3)

These are three constraint equations which relate four quantities;
therefore, only one is independent. The quantity {; was arbitrarily chosen
to be the independent variable.

Instead of specifying the ramp angle §,, the temperature of the
air entering the combustor T, was chosen as an independent quantity.

This was done so that the temperature required for autoignition of
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hydrogen and air (2000 R) could he placed directly as a lower bound on
the design quantity T, to facilitate the optimization process. The
ramp angle 8, necessary to produce the specified combustor entrance
temperature T, was calculated using an iterative procedure along
with the oblique shock equations. However, in order to calculate the
shock angles 6 and entrance combustor temperature T,, the flight
Mach number M,;, and ambient temperature T; must be specified in

addition to the geometric variables, thus
6. = £(Tq, Ty» My, §) (E4)

If the ambient temperature T; and ambient pressure p; are
assumed to be functions of altitude H, such as in the set of relation-
ships given by the standard atmosphere (Ref 25), then T; becomes a
dependent Juantity by reason of the following development.

Ambient pressure at start of cruise p; is determined from the
constraint of equilibrium flight normal to the flight path; hence, p;
becomes a function of lift L, weight at start of cruise Wj, and cruise

velocity V,;,

n = f(L, W, V) (ES)
From the standard atmosphere relations

H = f{(p) (E6)
and

T, = {(H) (E7)

therefore; the ambient temperature T, becomes a dependent quantity.
Thus, the final set of independent configuration quantities needed to
define the inlet was (£;, §;, T¢, M;).

A problem arises, however, in the sequences of calculation since
it is necessary to know the ambient temperature T, before the ambient

pressure p, is determined from the equilibrium flight constraint
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(Equation E5), and T, from Equations E6 and E7. The problem can be
solved by choosing a reference ambient temperature and assuming an
isothermal atmosphere over the range of equilibrium flight altitudes,
or by iteration on the equilibrium altitude. The standard atmosphere
is isothermal only from approximately 36,000 ft to 88,000 ft at which
point temperature begins to increase with altitude at approximately
1.6 R per thousand feet of altitude. Therefore, in the present study,

an iteration was performed on the initial equilibrium altitude.

Combustor. The constant area combustor (Fig 43) is formed by
the underside of the fuselage and a straight cowl located a distance h,
from the fuselage. Both the underside of the fuselage and cowl are
parallel with the body x-axis reference line. Independent configuration
design quantities associated with the constant area combustor are the
length £, and equivalence ratio ¢. The length £, also determines
the length of the vehicle midsection.

Equivalence ratio is defined in terms of stoichiometric fuel-air

ratio f. and actual fuel-air ratio f

$ = (E8)
8

where the stoichiometric fuel-air ratio f, is the ratio of fuel and air
which results in all of the available fuel and air entering into the chem-
ical reaction (f; = .0292 for hydrogen). Thus, the equivalence ratio
is a measure of the amount of energy added to the propulsive stream.
The equivalence ratio was designated an indeperdent variable to
facilitate the search for the optimum nozzle length and wing planform
area. Normally, the fuel-air ratio is controlled (by a throttle) to
produce unaccelerated flight for a fixed vehicle geometry. In the
present formulation, however, it was more efficient, from a computa-
tional and search standpoint, to fix the amount of energy added to the

propulsive stream and balance the resulting thrust with the drag from
an appropriate amount of wing area. As explained in the algorithm at
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the end of this section, wing area and performance parameters were
calculated as each uprunning characteristic from the trailing edge of
the cowl intersected the aftfuselage. Therefore, for one complete
nozzle characteristic solution, which was expensive in terms of compu-
tation time, many nozzle lengths and wings area combinations were
examined. In addition, the nozzle length was terminated when the
range performance no longer increased with nozzle length when the

situation occurred.

Nozzle-aftfuselage. The two-dimensional nozzle is formed by

the aftfuselage and the rear portion of the cowl as shown in Figure 1.
Three variables (£, f;, 05 ) are needed to define the geometry of the
nozzle-aftfuselage configuration. The maximum length of the nozzle 4
was constrained such that the base height hp was equal to or greater
than zero. The minimum length of the nozzle cowl {, was also

constrained as will be discussed later.

Wing. The variables (8y, 8,;, by, ¢, 812, ey, R, Sp) can be
used to describe the wing geometry and location on the vehicle as shown
in Figure 1. However, not all of the variables describing the wing are
independent. The first two relationships between the wing variables
comes from the definition of aspect ratio

b 2
R = — (E9)
Sp

and from the wing geometry

Sp = ¢ (ctan8,;) + c (b, - c tan §,,)

5 ¢ be (E10)

The wing planform area Sp was constrained such that the thrust and
drag of the wing-body combination were equal (equilibrium flight along
the flight path). Thus, the wing planform area Sp becomes a functioa

of the thrust minus body drag
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Sp = f(thrust - body drag) (E11)

The distance from the nose of the vehicle to the leading edge of
the wing f_, ~was determined by a trim requirement such that the
pitching moment of the wing-body combination about the center of
gravity of the fuselage be zero, hence

tew = {(pitching moment about center of gravity) (El12)

Attachment point of the wing leading edge and fuselage was constrained
to be on the fuselage (£, < f},) and was chosen to be in the xy-plane
of the body axis system. The latter requirement restricted the angle

of the top surface of the fuselage to positive values 8; > 0.

Fuselage. Four independent configuration quantities (a, 8;, b,
W,.,) are associated with the fuselage. The angle of attack a is the
angle between the free stream flow direction and the vehicle reference
axis shown in Figure 1. The angle §; is the angle between the x-axis
of the vehicle and the top surface of the fuselage; whereas, b is the
width of the two-dimensional fuselage. Although 8, was constrained
to positive values, a variable angle of attack allowed negative angles of
incidence of the top surface of the fuselage with respect to the free
stream flow,

The center of gravity of the two-dimensional fuselage, which can
be controlled to some extent by placement of equipment and fuel in the
vehicle, was assumed to coincide with the centriod of the profile area
of the fuselage. It is shown in the results, however, that this assump-
tion was not critical since the trim constraint did not seriously limit
the range performance of the vehicle.

Although the geometrical shape of the vehicle is defined by the
design quantities discussed thus far, the size or physical dimensions
arc arbitrary, The length of the first inlet ramp £, was used as the
length scale factor for the vehicle. The equation for calculating ¢,

(sce Appendix C) can be written as a function of vehicle shape and

94



takeoff weight wto

L, = f{(vehicle shape, wto) (E13)

As in the case of altitude it is necessary to specify a reference length
4; in order to calculate Reynolds numbers needed to determine skin
friction in the force calculations.

Independent and dependent quantities used to define the
geometrical model of the vehicle investigated in chis study are sum-

marized in Table IV. The number of independent quantities used to

TABLE IV

Configuration Definition Quantities

Independent Quantities
f L (610 T(o ¢v l‘l 650 ‘50 161690 6110 6120 ‘Rv bn 6-,,a,W

tor M)

Dependent Quantities

Variable Calculated From Relation
£;,45,h, El, E2, E3

6, E4

Sp Ell

Low El2

bw E9

c El0

P E5

T E7

2 El3

define the model is analagous to the number of degrees of freedom
used to describe a mechanical system with equality constraints. For

the case depicted in Table IV there are N = 27 quantities defining the
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configuration model and m = 1] equality constraint relations; thus, the

degrees-of-freedom n of model is given by
n = N-m = 16 (E14)

which corresponds to the number of independent configuration definition

variables.

Flow Field Prediction

Once the vehicle configuration model is defined, the second
major step in the problem formulation is the selection of methods to
predict flow field properties about the vehicle. The distribution of flow
field properties about the vehicle such as temperature, pressure, and
velocity is needed to evaluate aerodynamic, propulsive, and cruise
range performance. Inviscid flow field property distribution was
determined using the following prediction techniques: adiabatic shock,
Prandtl-Meyer expansion, one-dimensional constant - area supersonic
heat addition, and method of characteristics. Local inviscid properties
and turbulent (Ref 26) or laminar (Ref 27) skin friction laws, depending
on the local Reynolds number, were used to compute the skin friction
coefficient assuming a cold wall condition of T, = 2000R. Appendix D
contains typical values of skin friction coefficients obtained for various

local surfaces.

Shock Expansion. Oblique shock relations were used to

calculate flow field properties for compression surfaces and the
Prandt]-Meyer relations for all expansion surfaces except the nozzle-
aftfuselage. A constant value of 1.4 was used for the ratio of specific
heats in both the oblique shock and Prandtl-Meyer relations.

The underside of the cowl, top surface of the fuselage, and the
wing surfaces were treated as compression or expansion surfaces
depending on the alignment of the particular surface with the flow. Due
to the geometry uf the above surfaces only one shock wave or expansion

fan calculation per surface was required; however, the oblique shock
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relations were also used to calculate the flow field properties in the
inlet where three shock waves are involved. Initial conditions for the
first shock wave calculation were the free stream properties, and a
wedge angle equal to the sum of the first inlet ramp angle and angle of
attack. Conditions behind the first shock were used as initial conditions
for the second shock along with an assumed value of the second ramp
angle 8. Initial conditions for the third shock were the conditions
behind the second shock, and since the cowl is parallel to the x-body
axis, the wedge angle §; for the third shock becomes the sum of the
first and second ramp angles. An iterative procedure was used to
determine the ramp angle §, which produced the combustor entrance

temperature T, specified as a design variable.

Constant Area Heat Addition. The combustor inviscid flow

calculation procedure from station 4 to 5 (Fig 43) was based on the
enthalpy method (Ref 28) and the one-dimensional, shockless, constant
area heat addition relations for a mixture of gaseous hydrogen and air.
Since the coolant fuel is also used for propulsion, initial conditions for
the calculation assume that hydrogen fuel has a temperature of 2000 R
(with no axial momentum component). Air flow properties at the
combustor entrance were assumed equal to those at final inlet condi-
tions. The gases leaving the combustor at station 5 were assumed to
be in chemical equilibrium and produced by 100 per cent combustion
efficiency.

Combustion products tables of Ref 29 along with the
one-dimensional combustion equations were used to calculate combus-
tor exit flow properties at station 5. This calculation requires an
iteration on both the combustor exit pressure ps; and temperature T;s
since dissociation and ionization of the combustion products are
accounted for in the analysis.

Turbulent skin friction effects were superimposed on the inviscid

pressure distribution to determine the combustor duct forces. Although
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relations were also used to calculate the flow field properties in the
inlet where three shock waves are involved. Initial conditions for the
first shock wave calculation were the free stream properties, and a
wedge angle equal to the sum of the first inlet ramp angle and angle of
attack. Conditions behind the first shock were used as initial conditions
for the second shock along with an assumed value of the second ramp
angle 0,. Initial conditions for the third shock were the conditions
behind the second shock, and since the cowl is parallel to the x-body
axis, the wedge angle 0, for the third shock becomes the sum of the
first and second ramp angles. An iterative procedure was used to
determine the ramp angle §, which produced the combustor entrance

temperature T, specified as a design variable.

Constant Area Heat Addition. The combustor inviscid flow

calculation procedure from station 4 to 5 (Fig 43) was based on the
enthalpy method (Ref 28) and the one-dimensional, shockless, constant
area heat addition relations for a mixture of gaseous hydrogen and air.
Since the coolant fuel is also used for propulsion, initial conditions for
the calculation assume that hydrogen fuel has a temperature of 2000 R
(with no axial momentum component). Air flow properties at the
combustor entrance were assumed equal to those at final inlet condi-
tions. The gases leaving the combustor at station 5 were assumed to
be in chemical equilibrium and produced by 100 per cent combustion
efficiency.

Combustion products tables of Ref 29 along with the
one-dimensional combustion equations were used to calculate combus-
tor exit flow properties at station 5. This calculation requires an
iteration on both the combustor exit pressure ps and temperature T;
since dissociation and ionization of the combustion products are
accounted for in the analysis.

Turbulent skin friction effects were superimposed on the inviscid

pressure distribution to determine the combustor duct forces. Although
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Geometrically Eq E18 illustrates that the effect of combustor drag on
the combustor pressure ratio increases with increasing combustor
length to height ratio as expected. For typical values of combustor
skin friction coefficients Cfav = ,002 and combustor length to height
ratios of £,/ hy =5, the term Dc/ Ps Aq Vs My? is small compared to
unity. Thus, the effect of combustor drag on the pressure ratio is

small for the configuration geometries considered.

Method of Characteristics. The method of characteristics

(Ref 30) was used to determine the two-dimensional inviscid flow field
properties in the nozzle. It was assumed that the flow entering the
nozzle is uniform and that the total pressure remains constant during
the expansion process. Mach number at the nozzle entrance was based
on the frczen speed of sound determined from Ref 29 for the combustion
products at combustor exit conditions. The frozen speed of sound at
the combustor exit was also used to compute an effective specific heat
ratio ys which was then assumed to remain constant for the expansion
process. The above method resulted in constant values of specific heats
of ¥s £ 1.27 being used in the method of characteristic solutions.

A characteristic net was produced in the nozzle using a grid size
of Aw =1.25° As shown in Fig 44, expansion waves emananting
from the sharp corner at * a’ can either strike the inner surface of the
cowl and reflect to the aftfuselage, or miss the cowl and strike the
free pressure boundary. Waves missing the cowl and striking the free
pressure boundary do not reflect to the aftfuselage before the nozzle
length is terminated; however, expansion waves emananting from the
trailing edge of the cowl were accounted for when this condition existed.
Due to programing considerations, the minimum length of the nozzle
cowl was constrained to a length ;... at which the first down running
characteristic emananting from * a’ struck the nozzle cowl as shown

in Figure 44.
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the skin friction drag of the combustor duct was considered in the
computation of vehicle drag, the effect of combustor skin friction drag
on the inviscid flow field solution of the combustor was neglected, since
the effect of skin friction drag on the inviscid solution can be shown to
be small.

The pressure ratio ps / p, across the combustor can be written
using the one-dimensional momentum equation and equations of state of

a perfect gas at stations 4 and 5

D¢ )
2 ( A
Ps ., Ya M +1 -\pAyl (E15)
Ps s Mg + 1
where D, is the combustor friction drag. Factoring the numerator of
Eq E15
D¢

1
1 + -
P . % W( YyMe”  py My
Ps Ys Ms® + 1 (E10)

The term D./ ps Ay M,? can be compared to unity in order to deter-
mine under what conditions the pressure losses due to skin friction are
small.

Since the ratio of combustor area wetted by the propulsive stream
to the cross sectional area of the stream at station 4 is given by

((2hg £4 + 2 £, b)/ bhy), the combustor drag term can be written as

D Ye Pc Me 2 h, (E17)
c = av av awz Ly 1 + %) ¢
Ps Aq V4 My 1 Ps M, hy b fav

Since the term in the brackets on the right side of Eq E17 is on the
order of unity, and the height of the combustor to the width of the

vehicle is small, Eq E18 can be written

_Ec__._... s ii. C (E18)
PeAd Yy M;? hy fav
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Geometrically Eq E18 illustrates that the effect of combustor drag on
the combustor pressure ratio increases with increasing combustor
length to height ratio as expected. For typical values ¢ combustor
skin friction coefficients Cg, =.002 and combustor length to height
ratios of £,/ hy = 5, the term Dc/ Pe As Ve M is small compared to
unity. Thus, the effect of combustor drag on the pressure ratio is

small for the configuration geometries considered.

Method of Characteristics. The method of characteristics

(Ref 30) was used to determine the two-dimensional inviscid flow field
properties in the nozzle. It was assumed that the flow entering the
nozzle is uniform and that the total pressure remains constant during
the expansion process. Mach number at the nozzle entrance was based
on the frczen speed of sound determined from Ref 29 for the combustion
products at combustor exit conditions. The frozen speed of sound at
the combustor exit was also used to compute an effective specific heat
ratio Y5 which was then assumed to remain constant for the expansion
process. The above method cesulted in constant values of specific heats
of ¥s £ 1.27 being used in the method of characteristic solutions.

A characteristic net was produced in the nozzle using a grid size
of Aw =1,25°% As shown in Fig 44, expansion waves emananting
from the sharp corner at * a’ can either strike the inner surface of the
cowl and reflect to the aftfuselage, or miss the cowl and strike the
free pressure boundary. Waves missing the cowl and striking the {ree
pressure boundary do not reflect to the aftfuselage before the nozzle
length is terminated; however, expansion waves emananting from the
trailing edge of the cowl were accounted for when this condition existed.
Due to programing considerations, the minimum length of the nozzle
cowl was constrained to a length £, at which the first down running
characteristic emananting from * a’ struck the nozzle cowl as shown

in Figure 44.
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FIG 44 Schematic of Characteristic
Net in Nozzle

Performance Evaluation

Once the independent variable design set has been specified and
the flow field properties calculated for a configuration, then the
performance of the configuration can be evaluated. As pointed out in
Chapter 1lI, only the cruise segment of the mission profile was consid-
ered in the performance evaluation. This resulted in the Breguet

range equation

L A Yi
R = D Ilp 1 - v‘;/ vog in wf (EZO)

developed in Appendix A becoming the criterion function in the deter-*
mination of the optimum configuration. The purpose of this section is
to develop the equations which relate the criterion function R to the
independent configuration design variables. The Breguet range
equation can be divided into two parts: (1) the so called Breguet range

factor
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L \'4
RF = T Isp T V;#Vo’ (E21)

and (2) the structural factor

SF = In (W;/ W) (E22)

Kange Factor. The range factor is a measure of combined

aerodynamic and propulsive performance for a given cruise speed,
Equation (E21) is convenient for calculating range factor from L/ D
and Isp if these quantities are known for a configuration. However,
to calculate the range factor from the aerodynamic flow field surround-
ing the vehicle and vehicle geometry, it is convenient to write Eq E21
in another form by retracing two steps in its development. Using the
definition of specific impulse
T

Isp = \irf (E23)

and the requirement for equilibrium flight along the flight path of the

vehicle
T = D (E24)
Eq EZ2]1 becomes

L Vi
we 1-V, /v ¢

RF = (E25)

where the lift L is determined from the projection, in a direction
normal to the flight path, of the pressure p and shear stress T inte-

grated over all wetted surfaces A of the configuration

A A A A
L = f (-pn * k, + 7 t. ky)dA (E26)
all surfaces

subject to the requirement for equilibrium flight along the flight path

A A A A
ff(-pn°iw+'rt-iw)dA=0 (E27)
all surfaces
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where ’i\w. and ’ﬁw are unit vectors along and normal to the flight path
respectively, and 7 and T are the surface area normal and tangent
unit vectors respectively.

In evaluating the range factor RF from Eq E25, bookkeeping
decisions as to which forces are aerodynamic and which are propulsive
are not important since the integration of the surface integrals in
Eqs E26 and E27 is carried out over the entire surface of the configu-
ration. However, if one wishes to determine classical aerodynamic
and propulsive performance separately, a classification or division of
the forces must be made. The definition of thrust used in this study is

the projection of the nozzle force along the flight path given by

T-ff(pﬁ.'i\w-‘r't\°'i\w)dA (E28)

nozzle surfaces

Once the lg, has been determined then the L/ D can be found

from
L/D = (L/ v'vf)lsp (E29)

Structural Factor. The purnose of the development in this

section is to relate the structural factor {n(W;/ W¢) to configuration
design variables in such a manner that the value of the structural
factor is related to the configuration volumetric efficiency. Volumet-
ric efficiency as defined in the report, is the ratio of volume ¥ to
surface area A,.

If the takeoff weight W,  of the vehicle is assumed to be
composed of payload Wp. equipment W, fuel W¢, and structure

Ws. then the structurai factor can be written as

- -
Yie Mo
W, w w
i £l to
fn — = (n 1 + (E30)
e Yo, Y ¥
wto wtO wtO B
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where ch/ Wey is the fraction of total fuel used during cruise.

Two of the terms, Wg,/ Wi, and W,/ W, will be shown to be
related to the volumetric efficiency of the vehicle. However, in order
to evaluate the structural factor, from the set of independent design
variables, it is necessary to introduce the structural set S as

discussed in Chapter II:

[ w We wfc
S = 'y o v w2 Ppr P vpfo Y (E31)
Wio Weo Weo PO0° *

Neglecting the volume required for the structure, the enclosed

volume of the vehicle is composed of volume required for payload ¥

p'
equipment ¥, and fuel ¥g,, thus
¥ = Vp + Ve + Vu (E32)
The takeoff weight is given by
W, = wp tW_F W o+ W (E33)
Introducing Pp» Pe: and pg from the structural parameter set S,
Eqs E32 and E33 become respectively
w Wt w Wt
VH=V-WP—°-'w—e'—° (E34)
to pP to e
and
L [, - v, e ]
¥, = — v - W .—— W -W (E 35)
2 Py to wto to wto to 8
The wetted area of the vehicle is introduced by assuming that the
structural weight is a function of the wetted area--in particular a
linear function
W = vy A (E:6)
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Equating and rearranging Eqs E 34 and E35 along with Eq E36,
allow the takeoff weight to be written as a function of vehicle volume ¥,

wetted area Aw. and the structural parameter set S

AW
¥ o+ 2
7, o,
=

Wio W W W W (E37)
1.2 . |1 2]l -]l
b " Py wto pp wto Pe

to to

For each configuration defined by a set X of independent design vari-
ables, a relationship exists between ¥ and A, which, along with the
additional relationship given by Eq E37, uniquely determines the
volume and wetted area of the configuration. Once the vehicle volume
¥ is known, the total fuel volume ¥, can be determined {rom Eq E34
which along with the fuel density p; enables the total fuel fraction
Weo/ W, tobe calculated.

The structural fraction W./ W,, can be determined from Eq E36
knowing the wetted area A, and proportionality constant y,. All of
the terms in the structural factor are now known. The structural fac-
tor, and hence, the cruise range R can be evaluated given the set X

of independent design quantities and the set S of structural parameters.

Algorithm. This appendix is summarized by the computational
algorithm of the design and evaluation computer program. The purpose
of the algorithm is to relate the general formulation contained in this
appendix to the subroutines contained in the listing of the program
which details the equations used in the vehicle design and evaluation
computer programs.

For a given set of independent design variables the configuration
and performance of a vehicle is determined by the following procedure:
1. Input data including the independent design variables is

contained in MAIN.
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2. Initial conditions for flow field calculations are set in
subroutine RANGE,

3. Inlet-forebody flow field parameters and shock wave angles
are calculated in subroutine SHOCK using oblique shock relations.

4. Inlet configuration and combustor height are computed in
CONFIG using the constraint of shock on lip.

5. Flow field properties are determined for the underside of
cowl, fuselage top, and wing surfaces, by SHOCK or PRANT depending
on whether the component is a compression or expansion surface
respectively.

6. One-dimensional supersonic heat addition equations are
solved in CBMST to determine the inviscid flow properties at the
combustor exit.

7. Inviscid and viscid (subroutine SKINF) forces and moment
are calculated by subroutine FAM for the inlet, cowl, fuselage top and
sides back to the point where the nozzle-aftfuselage begins.

8. Inviscid nozzle flow properties are calculated by the method
of characteristics in subroutines NOZZL, STARTC, PMSBR, and LPS.

9. Force and moments are integrated on the nozzle-aftfuselage
by subroutine FAM. Integration step size is the axial distance between
the intersection of the nozzle-aftfuselage and adjacent up-running
characteristics.

10. The following computations are made in subroutine FAM
whenever an up-running characteristic strikes the nozzle-aftfuselage.
(a) Thrust forces produced by the nozzle and the drag
of the inlet, cowl, and fuselage are compared.
(b) If the thrust is less than body drag, another up-
running characteristic is computed which increases the nozzle length.
(c) Steps (a) and (L) continue until: (i) the nozzle
reaches the length specified in the design set, or (ii) the nozzle surface
intersects the top surface of fuselage (zero base) or (iii) the thrust is

greater than the body drag. I conditions (i) or (ii) occur, the
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calculation is terminated and the cruise range solution does not exist
for the selected set of configuration variables.

(d) If the thrust is greater than body drag, wing forces
and moments are detecrmined. A wing area is determined such that the
drag of the wing-body combination equals the thrust produced by the
nozzle.

(e) The center of force (for the wing-body combination)
and center of gravity (based on the center of area of the body profile) is
determined. Placement of the wing on the body is then calculated such
that the sum of the moments about the center of gravity is zero
(trimmed flight condition). If the trim requires a placement of the wing
such that the wing is off the body, the calculation returns to step 10 (c).

(f) Scaling or sizing the vehicle is made by relating
vehicle volume and wetted area to takeoff weight and the members of
the structural parameter set S.

(g) Ambient pressure at initial cruise altitude is
computed from the requirement for equilibrium flight normal to the
flight path.

(h) Structural, aerodynamic, propulsive, and cruise
range performance (criterion function) are calculated.

(i) Another up-running characteristic is computed
which increases the nozzle length.

(j) Steps (d) through (i) are repeated until one of the
following case termination conditions are reached: (I) cruise range
decreases with increasing nozzle length, (II) nozzle length greater than
length specified in design set or (IlI) intersection of the nozzle-aftfuselage
surface and fuselage upper surface (zero base).

1. I« the case is terminated by condition (I), the performance
value of the point before the decrease in performance was noted is used
as the final performance value.

12. If the case is terminated by conditions (L) or (IlI), between

the current point (exceeded constraint) and previous point (within)
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constraint), a linear interpolation is performed in subroutine NOZZ L
to adjust configuration performance and parameters to satisfy the
constraints,

13. Cooling requirements of the combustor and portions of the
inlet and nozzle as well as the leading edge are determined in
subroutine COOL.

14. Configuration performance and parameters are printed in

subroutine MAIN,
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